Name
Date
Period
Objective: *Understand the terms kinetic and potential energy
*Create a diagram of your rollercoaster that clearly demonstrates your
understanding of KE and PE

What makes a roller coaster work? What types of energy are involved?
Energy: the ability to do \qquad or cause \qquad Gravity: a force that \qquad objects toward the center of E
Potential energy: \qquad that results from the \qquad
Kinetic energy: \qquad that an object has \qquad to its \qquad
Friction: the force that one \qquad
\qquad on another when the two

Acceleration: \qquad at which \qquad $\underline{\longrightarrow}$ with \qquad

At the top of the first hill the roller coaster has \qquad . Once the roller coaster descends down the hill, this energy is now converted to \qquad .
What other force helps the roller coaster go down the hill? \qquad
Part 1: Link: www.funderstanding.com/k12/coaster Using the link follow these steps:

1. Push the play button (triangle). Why does the cart not make it to the end?

You will have 3 minutes to try out the different buttons on the game to become familiar with how it works.
3. Click RESET. Adjust the settings so that the cart successfully makes it to the end without falling off. (after 4 minutes, the class may give each other hints on how to get this to work). What settings did you adjust? Did you increase or decrease their level?
4. Create a rollercoaster design that has 2 loops, 1 hill or 2 hills, 1 loop, or 3 loops, or 3 hills that works (no falling off carts). The initial hill does not count. Draw the working design:

Materials: 1 ball bearing, \qquad clear tubing, masking tape, stop watch
Part 2: 1. Design a roller coaster with no loops and calculate its speed.
2. Design a roller coaster with 1 loop and calculate its speed. Then do 2 loops. (The ball must make it all the way to the end. Do NOT blow in tube to get ball out)

	no loops	1 loop	2 loops
Distance			
Time			
Speed= d / t			

What would you predict would happen to speed with 3 loops?

Part 3: Roller Coaster Design

Objective: To create a "roller coaster" that has 3 loops.
To correctly label potential and kinetic energy on a diagram of your roller coaster.

Procedure:

Your group is to create a roller coaster that has three loops. Your ball bearing or BB must start when dropped in the tube. The ball bearing or BB must make it to the end of the tubing. The goal is to have the most height in centimeters in your roller coaster. Height is calculated from the bottom of the tubing on the loop, to the top of the tubing at the highest point of the loop. All loops must rest on the table or on the floor. You add all three heights together. Your total height will be recorded on the whiteboard and a successful run might need to be seen by your teacher. Do NOT blow in tube to get ball out.

Data:

	Height of loop in cm				
Designs	Loop 1	Loop 2	Loop 3	Total (cm)	Time
A					
B					
C					

Neatly draw the roller coaster with the greatest height from your designs.
Label where the kinetic energy (KE) and potential energy (PE) are on your roller coaster.
There should be multiple spots for each. Put an * where each is greatest next to your label.

One per group NAMES

Now your group is to create the following roller coasters for these challenges:
Challenge 1-Create and draw a roller coaster for SLOWEST speed. Label the KE and PE. Record the Time: \qquad

Challenge 2- Create and draw a roller coaster for FASTEST speed. Label the KE and PE. Record the Time: \qquad

Challenge 3- Create and draw a roller coaster for MAXIMUM NUMBER OF LOOPS or HILLS. Label the KE and PE. Record the Time: \qquad

Challenge 4-Create your own challenge:

