

Notes on Motion

<u>an objects change</u> in distance from another point. 3 types of Motion: ⇒ speed >velocity >acceleration

2)Reference Point

><u>A stationary</u> object used to compare a moving object to

From your frame of reference the how is moving from left to right

What do we assume about a reference point?

 We assume a reference point is not moving or stationary.

Have you ever watched a *large truck* pass you on the highway and felt like you were going backwards?
Whether or not an <u>object is in motion</u> *depends* on the reference point you choose & if the distance between the object and the reference point is changing.

Relative Motion From the Plane

- The plane does not appear to be moving.
- The skydivers appear to be moving away.
- A point on the ground appears to be moving away.

Question: Can a distance be negative relative to a reference point?
Football Example: Reference point in football (below), positive play (left), negative play- sacked for

a loss (bottom right)

the distance an object travels divided by the time takes to travel

COPY THE SPEED TRIANGLE

What Is Speed?

DO NOT COPY ANYTHING

Ways To Calculate Speed

•<u>Constant speed</u> is when you are traveling at the same rate of speed, such as 55 mph constantly on a highway.

•Average speed is taking the total distance traveled, and dividing by the total time it takes. Used for calculations that involve changing speed.

Zero Acceleration

(acceleleration graph)

moving at the same exact speed in a straight line

> speed graph

5

Instantaneous Speed

> the speed that an object is moving in a specific instant

Instantaneous Speed

What is the instantaneous speed of the bass boat at t=7 seconds?

Instantaneous Speed

Instantaneous speed is speed at any given point in time. At 7 seconds, the distance is 85 meters; therefore the IS is

Instantaneous Speed = <u>85 meters</u> = 12.1 m/s 7 seconds

Average Speed

What is the AVERAGE speed of the bass boat depicted in the graph?

Average Speed

<u>Average speed</u> is taking the total distance traveled (0 to 125 meters), and dividing by the total time (1 to 9 seconds) it takes.

Average Speed = <u>125 meters</u> = 15.6 m/s 8 seconds

27) Terminal velocity

is the highest velocity attainable as an object falls through air. It occurs when air resistance equals the downward force of gravity acting on the object. (net force = Force due to Air Resistance zero acceleration.) The object is *about 200 km/h escribed as having attained terminal velocity

Force due to Gravity

ir resistance

Acceleration

 Acceleration is the rate of change of velocity. A change in velocity can be either a change in speed, or direction, or both. Deceleration is when acceleration has a negative value.

Acceleration

- The formula for calculating acceleration is:
- Acceleration (a) = final velocity (v_f) initial velocity (v_i)

time (sec)

• The unit for velocity, in this case, is

m/s/s OR m/s²

Acceleration Math Problem

•A jet starts at rest at the end of a runway and reaches a speed of 80 m/s in 20 s. What is its acceleration?

Acceleration Math Problem

- A jet starts at rest at the end of a runway and reaches a speed of 80 m/s in 20 s. What is its acceleration?
- Acceleration (a) = <u>final velocity (v_f) initial velocity (v_i)</u>
 time (sec)
 - $a = 80 \text{ m/s} 0 \text{ m/s} = 4 \text{ m/s}^2$
 - 20 sec

Acceleration Math Problem

 A skateboarder is moving in a straight line at a speed of 3 m/s and comes to a stop in 2 sec.
 What is his acceleration?

Graphing Speed

•Speed is usually graphed using a line graph, and it depicts the distance and time.

•Time is the independent variable, and thus is ALWAYS on the x-axis.

• Distance is the dependent variable, and is ALWAYS on the y-axis.

Speed Graphs

In what time period is the bass boat speeding up?
In what time period is the bass boat slowing down?

•When is the speed NOT changing?