Metlow

Notes on Motion

KZHSS Science

1)Motion:

${ }^{2}$ an objects change in distance from another point.

- 3 types of Motion:
» speed
2 velocity
ح acceleration

2)Reference Point

What do we assume about a reference point?

2 A stationary object used to

- We assume a reference point is not moving or stationary.

Motion

Motion

- Change in position in relation to a reference point.

From vour frame of reference the how is movine from laft the rieht
-Have you ever watched a large truck pass you on the highway and felt like you were going backwards?
-Whether or not an object is in motion depends on the reference point you choose \& if the distance between the object and the reference point is changing.

-Question: Can a distance be negative relative to a reference point?
-Football Example: Reference point in football (below), positive play (left), negative play- sacked for a loss (bottom right)

3) Speed

the distance an
object travels divided by the
time takes to travel

COPY THE SPEED TRIANGLE

What Is Speed?

- Speed is the distance an object travels in a certain amount of time.
-To calculate speed, you use the following formula:
-Speed (s) = Distance (d)

DO NOT COPY ANYTHING

Ways To Calculate Speed

-Constant speed is when you are traveling at the same rate of speed, such as 55 mph constantly on a highway.

- Average speed is taking the total distance traveled, and dividing by the total time it takes. Used for calculations that involve changing speed.

4) Constant Speed speed-time grapn when speed is constant

Zero Acceleration

a acceleleration graph

moving at the same

exact speed in a straight line

2 speed graph

Instantaneous Speed

ح the speed that an object is moving in a specific instant

Instantaneous Speed

What is the instantaneous
speed of the bass boat at $\mathrm{t}=7$
seconds?

Instantaneous Speed

Instantaneous speed is speed at any given point in time. At 7 seconds, the distance is 85 meters; therefore the IS is

$$
\text { Instantaneous Speed }=85 \text { meters }=12.1 \mathrm{~m} / \mathrm{s}
$$

7 seconds
5) Average Speed
$=\frac{d_{1}+d+d_{3} \ldots . d_{n}}{t_{1}+t_{2}+t_{3}+\ldots . t_{n}}$
$=\frac{\mathrm{D}_{\text {total }}}{\mathrm{T}_{\text {total }}}$
THE SPEED TRIANGLE

- Total distance divided by total time

ح Add up all the distances, and then add up all the time(s), and then divide

BOTH. Avage $=$ total distance covered travel time

Average Speed

What is the AVERAGE speed of the bass boat depicted in the graph?

Average Speed

Average speed is taking the total distance traveled (0 to 125 meters), and dividing by the total time (1 to 9 seconds) it takes.

Average Speed $=\mathbf{1 2 5}$ meters $=\mathbf{1 5 . 6} \mathbf{~ m} / \mathrm{s}$ 8 seconds

8 Velocity

$$
\begin{aligned}
& \mathrm{F}=\text { Force } \\
& \mathrm{L}=\text { Lift } \\
& \mathrm{D}=\text { Drag }
\end{aligned}
$$

- Speed with a given direction

Velocity

Speed vs. Velocity

Speed is simply how fast you are fravelling

Velocity is "speed in a given direction"

27) Terminal velocity

is the highest velocity

 attainable as an object falls through air. It occurs when air resistance equals the downward force of gravity acting on the object.(net force =
zero acceleration.) *about 200 km/h

9) Acceleration

a change in velocity (either a change speed and/or direction)
increasing $=$ acceleration
decreasing = deceleration
changing direction at the same speed
 SPEED GRAPH

Acceleration

-Acceleration is the rate of change of velocity. A change in velocity can be either a change in speed, or direction, or both.
-Deceleration is when acceleration has a negative value.

Acceleration

- The formula for calculating acceleration is:
- Acceleration (a) = final velocity $\left(v_{f}\right)$ - initial velocity $\left(v_{i}\right)$
time (sec)
- The unit for velocity, in this case, is

$$
\mathrm{m} / \mathrm{s} / \mathrm{s} \quad \text { OR } \quad \mathrm{m} / \mathrm{s}^{2}
$$

Acceleration Math Problem

- A jet starts at rest at the end of a runway and reaches a speed of 80 m / s in 20 s . What is its acceleration?

Acceleration Math Problem

- A jet starts at rest at the end of a runway and reaches a speed of $80 \mathrm{~m} / \mathrm{s}$ in 20 s . What is its acceleration?
- Acceleration (a) = final velocity $\left(\mathrm{v}_{\mathrm{f}}\right)$ - initial velocity $\left(\mathrm{v}_{\mathrm{i}}\right)$ time (sec)
- $a=80 \mathrm{~m} / \mathrm{s}-0 \mathrm{~m} / \mathrm{s}=4 \mathrm{~m} / \mathrm{s}^{2}$
- 20 sec

Acceleration Math Problem

- A skateboarder is moving in a straight line at a speed of $3 \mathrm{~m} / \mathrm{s}$ and comes to a stop in 2 sec . What is his acceleration?

$$
\mathrm{a}=\frac{0 \mathrm{~m} / \mathrm{s}-3 \mathrm{~m} / \mathrm{s}}{2 \mathrm{~m} / \mathrm{s}}=-1.5 \mathrm{~m} / \mathrm{q}
$$

Graphing Speed

- Speed is usually graphed using a line graph, and it depicts the distance and time.
- Time is the independent variable, and thus is ALWAYS on the x-axis.
- Distance is the dependent variable, and is ALWAYS on the y axis.

Speed Graphs

- In what time period is the bass boat speeding up?
- In what time period is the bass boat slowing down?
-When is the speed NOT changing?

