The ATOM

By Ms Toal

How small is an atom?

- Remember the metric staircase from the beginning of the year?
- "Millimeter" is .001 M and it is three steps to the right from the base unit.
- Basically Chemistry goes DOWN the metric staircase (very small)
- Well the size of an atom can vary but its approximately
 .000000001 M a
 10⁻⁹
 nanometer.
- An atom is a million times smaller than the thickest human hair

How big and small can the metric staircase go?

The Metric System Prefixes				
Prefix	Label	Decimal Value	Scientific	Colloquial
yocto	У	0.000 000 000 000 000 000 000 001	10 ⁻²⁴	septillionth
zepto	z	0.000 000 000 000 000 000 001	10 ⁻²¹	sextillionth
atto	а	0.000 000 000 000 000 001	10 ⁻¹⁸	quintillionth
femto	f	0.000 000 000 000 001	10 ⁻¹⁵	quadrillionth
pico	р	0.000 000 000 001	10 ⁻¹²	trillionth
nano	n	0.000 000 001	10 ⁻⁹	billionth
micro	μ	0.000 001	10 ⁻⁶	millionth
milli	m	0.001	10 ⁻³	thousandth
centi	С	0.01	10 ⁻²	hundredth
deci	d	0.1	10 ⁻¹	tenth
		1	10°	one
deka	da	10	10¹	ten
hecto	h	100	10 ²	hundred
kilo	k	1 000	10 ³	thousand
mega	M	1 000 000	10 ⁶	million
giga	G	1 000 000 000	10°	billion
tera	Т	1 000 000 000 000	10 ¹²	trillion
peta	Р	1 000 000 000 000 000	10 ¹⁵	quadrillion
exa	E	1 000 000 000 000 000 000	10 ¹⁸	quintillion
zetta	Z	1 000 000 000 000 000 000 000	10 ²¹	sextillion
yotta	Υ	1 000 000 000 000 000 000 000 000	10 ²⁴	septillion

What holds an atom together?

There are 4 forces:

- 1. The strong force
- 2. The electromagnetic force
- 3. The weak force
- 4. gravity

How do
we know
what an
atom
looks like?

- Many scientists
 wondered what is
 matter made of:
 - -John Dalton
 - -JJ Thompson
 - -Ernest Rutherford
 - -Bohr (most common atomic model)

What is an ATOM?

 ATOM = smallest particle of an element

What is an element?

• ELEMENT - a PURE
substance in which all
the atoms are alike and
cannot be broken down
into any other
substances

- What is an example of an element?
- Examples of an ELEMENT = aluminum, gold, silver, neon, helium

Only think about this...

 Aluminum foil is made up of one element, but there are billions of aluminum atoms that make up even a small piece of aluminum.

Structure of an atom

What is an atom made of?

- The atom is made up of even smaller particles called SUBATOMIC particles
- Sub = under or below (so it's a lower level, smaller than the atom)
- The subatomic particles are:
 - Proton (+ charge)
 - Neutron (neutral)
 - Electron (- charge)

It is time to start watching Jimmy Neutron!

Why doesn't an atom have a charge?

- The atom is made up of positive protons and negative electrons.
- If there are the same of positively charged protons (+) and the same number of negatively charged electrons (-),
- the charges cancel each other out and the overall charge of the atom is neutral.
- Neutral means no charge.
- Example: 10 (p+) + 10 (e-) = neutral charge

What is the:

nucleus.

The electron

A "Valence" Electron

- The electron is 2000 times smaller than the proton!
- It always has a negative charge!!!
- VALENCE ELECTRON the electrons that are farthest away from the nucleus of the atom. These electrons are involved in chemical reactions.

How many electrons does an atom have?

- There are the same number of electrons as there are protons.
- Sometimes electrons like to transfer but we'll worry about that later...
- ELECTRON SHELL RULES:
- 1st shell: holds maximum 2 e-
- 2nd shell: " "" 8 e-
- 3rd shell: " "" 8 e-
- 4th shell: " "" 18 e-
- Electron = e-

Comparison

The Atom

- The atom has a center, the nucleus.
- Electrons zoom or "orbit" around the nucleus.
- The atom can have large number of electrons orbiting its nucleus.
- 99% of atom's mass comes from its nucleus the proton and the neutron.

The Solar System

- Solar system nucleus is the sun.
- The moon orbits the earth and the planets orbit the sun.
- Just like the sun can have many planets/asteroids orbitting the sun.
- 99% of the mass of the solar system comes from the sun.

Is there anything smaller than a proton or neutron or electron?

- Yes!
- · If you could cut the protons and neutrons in half, then you would see that each proton and each neutron contain even smaller particles called GLUONS and **QUARKS**

Atom \rightarrow nucleus \rightarrow proton/neutron \rightarrow 2 blue quarks and 1 green gluon

THE END

- Break time
- But first a few quick links
- http://micro.magnet.fsu.edu/primer/java/scie nceopticsu/powersof10/index.html

- http://www.youtube.com/watch?v=TCUK93s1 jUY
- http://www.youtube.com/watch?v=vUzTQWn
 -wfE